e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject: Mathematics

Title/Heading of topic: Infinite series

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

INFINITE SERIES

2.1 Sequences: A sequence of real numbers is defined as a function $f: \mathbb{N} \to \mathbb{R}$, where \mathbb{N} is a set of natural numbers and \mathbb{R} is a set of real numbers. A sequence can be expressed as $\langle f_1, f_2, f_3, \dots, f_n, \dots \rangle$ or $\langle f_n \rangle$. For example $\langle \frac{1}{n} \rangle = \langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \rangle$ is a sequence.

Convergent sequence: A sequence $\langle u_n \rangle$ converges to a number l, if for given $\varepsilon > 0$, there exists a positive integer m depending on ε , such that $|u_n - l| < \varepsilon \ \forall \ n \ge m$.

Then *l* is called the limit of the given sequence and we can write

$$\lim_{n\to\infty} u_n = l \text{ or } u_n \to l$$

2.2 Definition of an Infinite Series

An expression of the form $u_1 + u_2 + u_3 + \cdots + u_n + \cdots$ is known as the infinite series of real numbers, where each u_n is a real number. It is denoted by $\sum_{n=1}^{\infty} u_n$.

For example $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ is an infinite series.

Convergence of an infinite series

Consider an infinite series $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + \cdots$

Let us define
$$S_1=u_1$$
 , $S_2=u_1+u_2$, $S_3=u_1+u_2+u_3$,,

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$
 and so on .

Then the sequence $\langle S_n \rangle$ so formed is known as the sequence of partial sums (S.O.P.S.) of the given series.

Convergent series: A series $u_1 + u_2 + u_3 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$ converges if the sequence $\langle S_n \rangle$ of its partial sums converges i.e. if $\lim_{n \to \infty} S_n$ exists. Also if $\lim_{n \to \infty} S_n = S$ then S is called as the sum of the given series.

Divergent series: A series $u_1 + u_2 + u_3 + \cdots + u_n + \cdots = \sum_{n=1}^{\infty} u_n$ diverges if the sequence $\langle S_n \rangle$ of its partial sums diverges i.e. if $\lim_{n \to \infty} S_n = +\infty$ or $-\infty$.

Example 1 Show that the Geometric series $\sum_{n=1}^{\infty} r^{n-1} = 1 + r + r^2 + r^3 + \dots$, where r > 0, is convergent if r < 1 and diverges if $r \ge 1$.

Solution: Let us define $S_1 = 1$, $S_2 = 1 + r$, $S_3 = 1 + r + r^2$,,

$$S_n = 1 + r + r^2 + \dots + r^{n-1}$$

Case 1: r < 1

Consider
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1-r^n}{1-r} = \frac{1}{1-r} - \lim_{n\to\infty} \frac{r^n}{1-r}$$

$$= \frac{1}{1-r} \quad (\text{As } \lim_{n\to\infty} r^n = 0 \text{ if } |r| < 1)$$

Since $\lim_{n\to\infty} S_n$ is finite : the sequence of partial sums i.e. $\langle S_n \rangle$ converges and hence the given series converges.

Case 2: r > 1

Consider
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{r^{n-1}}{r-1} = \lim_{n\to\infty} \frac{r^n}{1-r} - \frac{1}{r-1}$$

 $\to \infty \text{ (As } r^n \to \infty \text{ if } r > 1)$

Since $\langle S_n \rangle$ diverges and hence the given series diverges.

Case 2: r = 1

Consider
$$S_n = 1 + r + r^2 + \dots + r^{n-1}$$

= $1 + 1 + 1 + 1 + \dots + 1 = n \Rightarrow \lim_{n \to \infty} S_n = \infty$

Since $\langle S_n \rangle$ diverges and hence the given series diverges.

Positive term series

An infinite series whose all terms are positive is called a positive term series.

p-series: An infinite series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ (p > 0) is called p-series.

It converges if p > 1 and diverges if $p \le 1$.

For example:

$$1.\sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \dots \text{ converges}$$
 (As $p = 3 > 1$)

$$2.\sum_{n=1}^{\infty} \frac{1}{n^{5/2}} = \frac{1}{1^{5/2}} + \frac{1}{2^{5/2}} + \frac{1}{3^{5/2}} + \cdots$$
 converges (As $p = \frac{5}{2} > 1$)

$$3.\sum_{n=1}^{\infty} \frac{1}{n^{1/2}} = \frac{1}{1^{1/2}} + \frac{1}{2^{1/2}} + \frac{1}{3^{1/2}} + \cdots$$
 converges $\left(\text{As } p = \frac{1}{2} < 1 \right)$

Necessary condition for convergence:

If an infinite series $\sum_{n=1}^{\infty} u_n$ is convergent then $\lim_{n\to\infty} u_n = 0$. However, converse need not be true.

Proof: Consider the sequence $\langle S_n \rangle$ of partial sums of the series $\sum_{n=1}^{\infty} u_n$.

We know that
$$S_n=u_1+u_2+u_3+\cdots\cdots+u_n$$

$$=u_1+u_2+u_3+\cdots+u_{n-1}+u_n$$

$$\Rightarrow S_{n-1}=u_1+u_2+u_3+\cdots\cdots+u_{n-1}$$

Now
$$S_n - S_{n-1} = u_n$$

Taking limit $n \to \infty$, we get

$$\lim_{n\to\infty}(S_n-S_{n-1})=\lim_{n\to\infty}u_n$$

$$\Rightarrow \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = \lim_{n \to \infty} u_n \dots (1)$$

As $\sum_{n=1}^{\infty} u_n$ is convergent \therefore sequence $\langle S_n \rangle$ of its partial sums is also convergent.

Let
$$\lim_{n\to\infty} S_n = l$$
, then $\lim_{n\to\infty} S_{n-1} = l$

Substituting these values in equation (1), we get $\lim_{n\to\infty} u_n = 0$.

To show that converse may not hold, let us consider the series $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{n}$.

Here
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n} = 0$$

But $\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent series (As p=1)

Corollary: If $\lim_{n\to\infty} u_n \neq 0$, then $\sum_{n=1}^{\infty} u_n$ cannot converge.

Example 2Test the convergence of the series $\sum_{n=1}^{\infty} \cos \frac{1}{n}$

Solution: Here
$$u_n = cos \frac{1}{n} \Rightarrow \lim_{n \to \infty} u_n = \lim_{n \to \infty} cos \frac{1}{n} = 1 \neq 0$$

Hence the given series is not convergent.

Example 3 Test the convergence of the series $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}}$

Solution: Here
$$u_n = \sqrt{\frac{n}{n+1}} \Rightarrow \lim_{n \to \infty} u_n = \lim_{n \to \infty} \sqrt{\frac{n}{n+1}}$$
$$\Rightarrow \lim_{n \to \infty} u_n = \lim_{n \to \infty} \sqrt{\frac{1}{1 + \frac{1}{n}}} = 1 \neq 0$$

Hence the given series is not convergent.